Migrate Django API#
This tutorial will use a project-driven approach to migrate a simple API from Django to FastAPI. We’ll take a Django-based API and incrementally transition it to FastAPI, covering the application structure, endpoints, and a seamless data migration process using SQLAlchemy.
This guide is intended for developers who want to convert their API infrastructure while maintaining database consistency.
👉 New to App-Generator? Join our 10k+ Community using GitHub One-Click SignIN.
Project Setup and Initial Structure in Django#
Start by creating a Django project for a basic API that handles users and tasks. This application will include endpoints to create, retrieve, update, and delete records.
Step 1: Setting Up the Django Project#
Create a new Django project and app:
django-admin startproject project_migration cd project_migration python manage.py startapp tasks
Here,
django-admin
initiates a new project namedproject_migration
, andstartapp
creates atasks
app within the project to handle user and task APIs.In
settings.py
, configure the database and add thetasks
app toINSTALLED_APPS
.Define a simple data model in
tasks/models.py
for Users and Tasks:from django.db import models class User(models.Model): username = models.CharField(max_length=100, unique=True) email = models.EmailField(unique=True) class Task(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) title = models.CharField(max_length=200) description = models.TextField(blank=True) is_completed = models.BooleanField(default=False)
This code defines a
User
model with a unique username and email, and aTask
model linked to aUser
, allowing each user to have multiple tasks. TheTask
model includes fields for task details and completion status.Create and apply migrations:
python manage.py makemigrations python manage.py migrate
makemigrations
generates migration files for model changes, andmigrate
applies them to the database, creating tables for theUser
andTask
models.Implement basic views and URL routes in
tasks/views.py
andtasks/urls.py
:from django.shortcuts import get_object_or_404 from .models import User, Task from django.http import JsonResponse from django.views.decorators.csrf import csrf_exempt import json @csrf_exempt def create_user(request): if request.method == 'POST': data = json.loads(request.body) user = User.objects.create(username=data['username'], email=data['email']) return JsonResponse({'id': user.id, 'username': user.username, 'email': user.email}) @csrf_exempt def list_tasks(request, user_id): tasks = Task.objects.filter(user_id=user_id) return JsonResponse([{'id': task.id, 'title': task.title, 'is_completed': task.is_completed} for task in tasks], safe=False)
The
create_user
view handles POST requests to add a new user, andlist_tasks
fetches tasks related to a specifieduser_id
. Each function returns a JSON response, making the endpoints accessible for external requests.Configure the main URL routes in
project_migration/urls.py
:from django.urls import path, include urlpatterns = [ path('api/', include('tasks.urls')), ]
Here, the main URL configuration includes routes from the
tasks
app under the/api/
endpoint, centralizing the project’s API structure.
At this point, we have a functioning API in Django. Now, let’s begin the migration process by setting up FastAPI.
Step 2: Setting Up the FastAPI Project#
Create a new directory structure for FastAPI:
mkdir fastapi_migration
cd fastapi_migration
Install FastAPI and an ASGI server, such as uvicorn
, for local testing:
pip install fastapi uvicorn sqlalchemy pydantic
This sets up the fastapi_migration
folder for our new project, installing FastAPI, uvicorn
for running the app, and sqlalchemy
and pydantic
for data modeling and validation.
Step 3: Setting Up SQLAlchemy Models in FastAPI#
Define SQLAlchemy models similar to Django’s ORM models.
database.py: Set up the connection to the database using SQLAlchemy.
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db" engine = create_engine(SQLALCHEMY_DATABASE_URL) SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) Base = declarative_base()
This code establishes a SQLite database connection using SQLAlchemy.
SessionLocal
creates sessions for database operations, whileBase
serves as a base class for model definitions.models.py: Recreate the Django models in SQLAlchemy.
from sqlalchemy import Column, Integer, String, Boolean, ForeignKey from sqlalchemy.orm import relationship from .database import Base class User(Base): __tablename__ = "users" id = Column(Integer, primary_key=True, index=True) username = Column(String, unique=True, index=True) email = Column(String, unique=True, index=True) class Task(Base): __tablename__ = "tasks" id = Column(Integer, primary_key=True, index=True) title = Column(String, index=True) description = Column(String) is_completed = Column(Boolean, default=False) user_id = Column(Integer, ForeignKey("users.id")) user = relationship("User")
The models here mirror the Django structure, with a
User
table and aTask
table that includes a foreign key toUser
, enforcing relational integrity between tasks and users.schemas.py: Define Pydantic models to validate input data.
from pydantic import BaseModel class UserBase(BaseModel): username: str email: str class TaskBase(BaseModel): title: str description: str is_completed: bool
These Pydantic models handle validation and serialization of user and task data, ensuring correct data structures for input and output across the API.
crud.py: Implement the CRUD functions using SQLAlchemy’s session.
from sqlalchemy.orm import Session from . import models, schemas def create_user(db: Session, user: schemas.UserBase): db_user = models.User(username=user.username, email=user.email) db.add(db_user) db.commit() db.refresh(db_user) return db_user def get_tasks(db: Session, user_id: int): return db.query(models.Task).filter(models.Task.user_id == user_id).all()
create_user
adds a new user to the database, whileget_tasks
retrieves tasks associated with a user ID, utilizing SQLAlchemy’s ORM for data interactions.
Step 4: Exporting Django Data#
In the Django project, use the following script to export data:
import json
from tasks.models import User, Task
data = {
"users": list(User.objects.values()),
"tasks": list(Task.objects.values())
}
with open('data.json', 'w') as f:
json.dump(data, f)
This script collects all User
and Task
records into dictionaries and writes them to a JSON file, data.json
, which will be imported into the FastAPI project.
Step 5: Importing Data into FastAPI#
In the FastAPI project, create an import script:
import json
from sqlalchemy.orm import Session
from .database import SessionLocal, engine
from . import models
models.Base.metadata.create_all(bind=engine)
def import_data():
db = SessionLocal()
with open('data.json') as f:
data = json.load(f)
for user_data in data['users']:
user = models.User(id=user_data['id'], username=user_data['username'], email=user_data['email'])
db.add(user)
db.commit()
for task_data in data['tasks']:
task = models.Task(id=task_data['id'], title=task_data['title'], is_completed=task_data['is_completed'], user_id=task_data['user_id'])
db.add(task)
db.commit()
This function reads data.json
and inserts each record into the FastAPI database. The Base.metadata.create_all
call ensures tables exist before importing data, and each add
operation pushes individual records to the database.
Conclusion#
The migration process shows how to transition from Django to FastAPI with data integrity maintained through SQLAlchemy. The provided code snippets create a functional API in FastAPI, complete with database migrations and CRUD operations, serving as a reusable guide for real-world applications where a shift to FastAPI enhances performance.
Links#
👉 New to App-Generator? Join our 10k+ Community using GitHub One-Click SignIN.
👉
Download
products and start fast a new project👉 Bootstrap your startUp, MVP or Legacy project with a custom development sprint