Deploy Flask#

This page explains how to deploy a Flask project on Fly.io, the popular deployment platform for developers.

πŸ‘‰ New to App-Generator? Sign IN with GitHub or Generate Web Apps in no time (free service).

Framework Overview#

Flask is a lightweight WSGI web application framework written in Python. It implements a minimalistic core that can be extended with numerous official and community-created extensions. Flask’s modular architecture makes it particularly suitable for microservices and API development, while maintaining the capability to scale into complex applications.

Deployment Configuration#

Project Structure#

A standard Flask application structure for deployment:

β”œβ”€β”€ app/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ models.py
β”‚   β”œβ”€β”€ routes.py
β”‚   └── templates/
β”œβ”€β”€ Dockerfile
β”œβ”€β”€ requirements.txt
β”œβ”€β”€ gunicorn.conf.py
└── wsgi.py

Essential Files Configuration#

  1. requirements.txt:

Flask==3.0.0
gunicorn==21.2.0
python-dotenv==1.0.0
Werkzeug==3.0.1
# Add other dependencies as needed
  1. wsgi.py:

from app import create_app

app = create_app()

if __name__ == "__main__":
    app.run()
  1. gunicorn.conf.py:

# Gunicorn configuration
workers = 4
bind = "0.0.0.0:8080"
worker_class = "gthread"
threads = 2
timeout = 120
  1. Dockerfile:

# Use Python 3.11 slim image
FROM python:3.11-slim

# Set working directory
WORKDIR /app

# Install system dependencies
RUN apt-get update && apt-get install -y \
    build-essential \
    python3-dev \
    && rm -rf /var/lib/apt/lists/*

# Install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy application code
COPY . .

# Set environment variables
ENV FLASK_APP=wsgi.py
ENV FLASK_ENV=production
ENV PYTHONUNBUFFERED=1

# Expose port
EXPOSE 8080

# Start Gunicorn
CMD ["gunicorn", "--config", "gunicorn.conf.py", "wsgi:app"]
  1. .dockerignore:

__pycache__
*.pyc
*.pyo
*.pyd
.Python
env/
venv/
.env
*.log
.git/
.gitignore

Fly.io Configuration#

  1. fly.toml:

app = "your-flask-app"
primary_region = "dfw"

[build]
    dockerfile = "Dockerfile"

[env]
    PORT = "8080"

[http_service]
    internal_port = 8080
    force_https = true
    auto_stop_machines = true
    auto_start_machines = true
    min_machines_running = 1
    processes = ["app"]

[[vm]]
    cpu_kind = "shared"
    cpus = 1
    memory_mb = 256

Deployment Process#

  1. Initialize Fly.io application:

fly launch
  1. Configure environment variables:

fly secrets set FLASK_SECRET_KEY="your-secret-key"
fly secrets set DATABASE_URL="your-database-url"
  1. Deploy the application:

fly deploy
  1. Validate deployment:

fly status

Database Integration#

For PostgreSQL database integration:

  1. Create a Fly PostgreSQL cluster:

fly postgres create
  1. Attach database to your application:

fly postgres attach <database-name>
  1. Update Flask configuration:

# config.py
import os

class Config:
    SQLALCHEMY_DATABASE_URI = os.getenv('DATABASE_URL')
    SQLALCHEMY_TRACK_MODIFICATIONS = False
```

## SSL Configuration

SSL certificates are automatically managed by Fly.io. Configure your Flask application to handle HTTPS:

```python
# app/__init__.py
from flask_talisman import Talisman

def create_app():
    app = Flask(__name__)
    if not app.debug:
        Talisman(app, force_https=True)
    return app

Monitoring and Logging#

  1. View application logs:

fly logs
  1. Monitor application metrics:

fly status
fly monitor

Scaling Configuration#

  1. Horizontal scaling:

fly scale count 2  # Scale to 2 instances
  1. Vertical scaling:

fly scale vm shared-cpu-1x

Health Checks#

Implement a health check endpoint:

@app.route('/health')
def health_check():
    return jsonify({"status": "healthy"}), 200

Update fly.toml to include health check:

[checks]
    [checks.health]
        port = 8080
        type = "http"
        interval = "15s"
        timeout = "2s"
        grace_period = "5s"
        method = "GET"
        path = "/health"

Performance Optimization#

  1. Configure Gunicorn workers:

Update gunicorn.conf.py based on available resources:

import multiprocessing

workers = multiprocessing.cpu_count() * 2 + 1
threads = 2
worker_class = "gthread"
worker_connections = 1000
  1. Implement caching:

from flask_caching import Cache

cache = Cache(config={'CACHE_TYPE': 'simple'})

@app.route('/cached-endpoint')
@cache.cached(timeout=300)
def cached_endpoint():
    return expensive_operation()

Common Issues and Solutions#

  1. Database Connection Issues - Verify DATABASE_URL in environment variables - Check database firewall rules - Validate connection pool settings

  2. Memory Issues - Monitor memory usage with fly monitor - Adjust Gunicorn worker settings - Implement proper connection pooling

  3. Static Files - Use WhiteNoise for static file serving - Configure proper caching headers - Consider using a CDN for large applications

This documentation provides a comprehensive guide for deploying Flask applications on Fly.io. Regular monitoring and maintenance of your deployed application is recommended for optimal performance.